Contents

CHAPTER 1
Introduction
1.1 High-Level Information Fusion (HLIF) Challenges 1
1.2 Book Structure
 1.2.1 Perspectives from Australian Contributions 4
 1.2.2 Perspectives from Canadian Contributions 5
 1.2.3 Perspectives from United States Contributions 6
1.3 A Science of High-Level Information Fusion 7
References 10

PART I
Information Fusion Concepts 11

CHAPTER 2
Situation Assessment and Situation Awareness
2.1 Introduction 13
2.2 Situation Awareness and Situation Assessment Defined 14
2.3 Situation Awareness (SAW) Models
 2.3.1 Endsley’s SAW Model 17
 2.3.2 Recognition Primed Decision (RPD) Making Model 17
2.4 Situation Assessment Models
 2.4.1 Data Fusion Information Group Model 18
 2.4.2 Situational Assessment Models for the User 20
2.5 Situational Assessment Model Based on Activities of Interest
 2.5.1 Syntactic algorithms and Semantic Synonyms in Information Fusion Analysis 21
 2.5.2 Definition of a Situation 23
 2.5.3 The Situation Awareness Reference Model 23
2.6 Current Information Fusion Situation Assessment Reference Model for Information Fusion 24
2.7 Discussion 26
 2.7.1 Situation Assessment Representations and Theory 26
 2.7.2 Situation Assessment Metrics 27
 2.7.3 SA/SAW Issues and Challenges 27
2.8 Conclusions 28
References 29

CHAPTER 3
The State Transition Data Fusion Model 33
3.1 Information Revolution 33
 3.1.1 Situation Awareness 33
 3.1.2 Data Fusion 34
 3.1.3 Renaissance 35
3.2 State Transitions 38
 3.2.1 Classification 38
 3.2.2 States 39
 3.2.3 Transitions 41
 3.2.4 JDL States in the World 41
3.3 The STDF Fusion Process 43
 3.3.1 Prediction, Observation, and Explanation 43
 3.3.2 The General Form of a Fusion Process 45
 3.3.3 JDL Assessments 46
3.4 Level 0 Fusion 47
 3.4.1 Level 0 Signal Fusion 47
 3.4.2 Level 0 Textual Fusion 52
3.5 Level 1 Fusion 56
 3.5.1 Level 1 Signal Fusion 56
 3.5.2 Level 1 Textual Fusion 60
3.6 Level 2 Fusion 63
3.7 Level 3 Fusion 73
References 78

CHAPTER 4
Formalization of Situation Analysis Through Interpreted Systems Semantics 81
4.1 Introduction 81
 4.1.1 Formal Models of Higher Levels of Information Fusion 82
 4.1.2 Situations in State Spaces 84
4.2 Background 85
 4.2.1 Interpreted Systems 85
 4.2.2 Different Kinds of Interpreted Systems 88
4.3 Formalization of the Situation Analysis Process 90
 4.3.1 Situation 91
 4.3.2 Situation Awareness 91
 4.3.3 Situation Perception and Comprehension 94
 4.3.4 Situation Analysis 95
PART II
Distributed Information Fusion and Management 103

CHAPTER 5
The Role of Information Management to Support High-Level Fusion 105
5.1 Introduction: What Is Information Management and Why Do We Care? 105
5.2 Model of Information Management 107
 5.2.1 Managed Information Objects 109
 5.2.2 Actors 110
 5.2.3 Service Layers 110
 5.2.4 Information Spaces 110
 5.2.5 Utility of the Information Management (IM) Model 110
5.3 Information Management Challenges in a Coalition Environment 112
5.4 Information Management Best Practices 114
 5.4.1 Information Sharing 115
 5.4.2 Reducing Complexity 115
 5.4.3 Control and Flexibility 117
5.5 Information Management Support to Information Fusion 118
 5.5.1 Information Lifecycle 118
 5.5.2 Syntactic and Semantic Interoperability 119
 5.5.3 Management and Exploitation of Contextual Information 120
 5.5.4 Management and Exploitation of Unstructured Information 123
 5.5.5 Information Management as a Service 126
 5.5.6 Workflow 128
5.6 Information Management from an Agent Perspective 132
5.7 Conclusions 133
References 134

CHAPTER 6
Coalition Distributed Information Fusion Testbed 137
6.1 Models of Collaboration 137
 6.1.1 Technology Showcase 137
 6.1.2 Technology Demonstration 138
 6.1.3 Technology Evaluation 138
 6.1.4 Technology Sharing 138
 6.1.5 Joint Development 138
 6.1.6 Joint Ownership 139
6.2 Requirements

6.2.1 Provide Simulated Information Feeds 139
6.2.2 Real-Time Performance 140
6.2.3 Distributed Architecture 140
6.2.4 Integrate Heterogeneous Systems 140
6.2.5 Loose Coupling Between Components 141
6.2.6 Dynamic Resource Management and Process Control 141

6.3 CoAX (Collaboration 2002 Experiment) 141

6.4 Architecture 143

6.4.1 Simulation Layer 143
6.4.2 Information Management Layer 144
6.4.3 Information Fusion Layer 146
6.4.4 Resource Management Layer 147
6.4.5 Human-Machine Interface Layer 148

6.5 Conclusion 151

References 152

CHAPTER 7

Information Fusion and Resource Management Testbed 155

7.1 Introduction 155

7.2 INFORM Lab architecture 156

7.2.1 OODA Agent Components 159
7.2.2 Platforms 161
7.2.3 Default Communicator 162
7.2.4 Goals 163
7.2.5 Situation Evidence 163
7.2.6 Agent Affiliations and Relationships 164
7.2.7 Services 165
7.2.8 Extension Mechanisms 166

7.3 INFORM Lab Implementation 167

7.4 Tests and Validation 168

7.5 Conclusion 171

References 171

CHAPTER 8

The Legal Agreement Protocol 173

8.1 Conceptualization 173

8.1.1 Decentralization 174
8.1.2 Ubiquity 176
8.1.3 Automation 176
8.1.4 Integration 178

8.2 Formalization 179

8.2.1 Contract Formation 179
8.2.2 Contract Performance 182
8.2.3 Contract Remedies 182
PART III

Human-System Interaction

CHAPTER 9

User-Defined Operating Picture (UDOP)

9.1 Introduction

9.2 The Need for a New Picturing Capability: UDOP

9.2.1 Challenges with Picturing Capabilities

9.2.2 Potential Universality of Picturing Challenges and Issues

9.2.3 Impact of Picturing Challenges and Issues

9.2.4 Defining Users and User Needs

9.2.5 Current Abilities to Define Own Pictures

9.2.6 Purposes of Picturing Capabilities

9.3 Characteristics of a UDOP

9.4 Realizing a Future UDOP Capability

9.4.1 Developing an Understanding of Components and Architectures

9.4.2 Providing Guidance for Exploitation of UDOP Visualizations

9.4.3 Feasibility of UDOP

9.4.4 Way Forward

9.5 A Few Examples of Remaining Issues

9.5.1 Awareness of Information Sources

9.5.2 Selecting Information Sources

9.5.3 Dealing with Remaining Need-to-Know Constraints

9.5.4 Catering for Varying End User Expertise

9.6 Conclusions

Acknowledgments

References

CHAPTER 10

User Information Fusion Decision Making Analysis with the C-OODA Model

10.1 Introduction

10.2 Decision Making Models

10.2.1 DFIG and OODA Loop

10.2.2 Multiplayer OODA

10.3 The Cognitive OODA Loop

10.3.1 Situation Assessment Models

10.3.2 SHOR Model for Action

10.3.3 The Skills-Rules-Knowledge Model
10.3.4 The Modular OODA (M-OODA) 222
10.3.5 The Cognitive Process Included in the C-OODA 223
10.4 Simulation 223
10.5 Discussions and Conclusions 227
References 229

PART IV
Scenario-Based Design 231

CHAPTER 11
Scenario-Based Design for Situation Analysis 233
11.1 Introduction 233
11.2 Findings on SBD Methodology 234
 11.2.1 The Proposed SBD Framework for Military C2 236
 11.2.2 Specifics of the Military Strike in Atlantis Vignette 239
11.3 Scenario-Based Design Process Based on Atlantis Problem Scenario 240
11.4 Conclusion 248
References 249

CHAPTER 12
A Coalition Approach to High-Level Information Fusion 251
12.1 Introduction 251
 12.1.1 Vision 251
 12.1.2 Content 252
12.2 Scenario 252
12.3 CDIFT 255
12.4 Platforms, Sensor Models, and Trackers 256
 12.4.1 Redland Warships 257
 12.4.2 Convoy 257
 12.4.3 Commercial Air Corridors 257
 12.4.4 Blueland Ground-Based Radars 257
 12.4.5 Events and Order of Battle ORBAT 258
12.5 Fusion 2+ 258
12.6 Indicators of Collective Behaviour 260
 12.6.1 Indicators of Collective Behaviour Algorithm 260
 12.6.2 Identifying Candidate Clusters 261
 12.6.3 Assessing Confidence 261
 12.6.4 Inferring Intent 262
 12.6.5 CDIFT Application 263
12.7 STDF Model 263
 12.7.1 State Representation 264
 12.7.2 Observation 266
 12.7.3 Prediction and Explanation 267
12.8 Higher COP 268
12.9 Urban Operations 272
12.10 Combat Search and Rescue (CSAR) 273
12.11 Conclusion 276
References 276

CHAPTER 13

Operating Condition Scenario Modeling for Information Fusion Assessment 279

13.1 Introduction 279
 13.1.1 Sensor-Based Classifier Operating Conditions 280
 13.1.2 Scenario-Based Evaluation 281
 13.1.3 Design of Experiments for Scenarios 282
13.2 Operating Condition Model Terminology 283
 13.2.1 Direct Versus Indirect OCs 283
 13.2.2 Derived OCs 284
 13.2.3 Standard OCs Versus Extended OCs 284
13.3 Operating Condition Model Design 285
 13.3.1 Bayes Model 285
 13.3.2 Bayes Fusion from Real World (Scenario) Analysis 286
13.4 Example Operating Conditions 287
 13.4.1 Target OCs 287
 13.4.2 Environmental OCs 289
 13.4.3 Sensor OCs 290
 13.4.4 ATC Training OCs 291
 13.4.5 OC Model 292
13.5 Conditioning on Operating Conditions 292
13.6 Conclusions 293
Acknowledgments 295
References 295

PART V

Measures of Effectiveness 297

CHAPTER 14

A Toolbox for the Evaluation of Surveillance Strategies Based on Interpreted Systems 299

14.1 Introduction 299
14.2 Situations Generated By Motion And Sensing Strategies 300
 14.2.1 Visibility-Based Pursuit-Evasion in Graphs 301
 14.2.2 Sensor Placement Problem 303
 14.2.3 Exploration 303
14.3 Situation Analysis Toolbox 304
 14.3.1 Countersmuggling Vignette 305
 14.3.2 The Discretization Toolbox 307
 14.3.3 The State Generator 308
 14.3.4 The State Searching Toolbox 309